Factor Graphs and message passing

Carl Edward Rasmussen

October 28th, 2016

Key concepts

- Factor graphs are a class of graphical model
- A factor graph represents the product structure of a function, and contains factor nodes and variable nodes
- We can compute marginals and conditionals efficiently by passing messages on the factor graph, this is called the sum-product algorithm (a.k.a. belief propagation or factor-graph propagation)
- We can apply this to the True Skill graph
- But certain messages need to be approximated
- One approximation method based on moment matching is called Expectation Propagation (EP)

Factor Graphs

Factor graphs are a type of probabilistic graphical model (others are directed graphs, a.k.a. Bayesian networks, and undirected graphs, a.k.a. Markov networks).

Factor graphs allow to represent the product structure of a function.
Example: consider the factorising probability distribution:

$$
p(v, w, x, y, z)=f_{1}(v, w) f_{2}(w, x) f_{3}(x, y) f_{4}(x, z)
$$

A factor graph is a bipartite graph with two types of nodes:

- Factor node: $\square \quad$ Variable node: \bigcirc
- Edges represent the dependency of factors on variables.

Factor Graphs

$$
p(v, w, x, y, z)=f_{1}(v, w) \mathrm{f}_{2}(w, x) \mathrm{f}_{3}(x, y) \mathrm{f}_{4}(\mathrm{x}, \mathrm{z})
$$

- What are the marginal distributions of the individual variables?
- What is $p(w)$?
- How do we compute conditional distributions, e.g. $p(w \mid y)$?

For now, we will focus on tree-structured factor graphs.

Factor trees: separation (1)

- If w, v, x, y and z take K values each, we have $\approx 3 K^{4}$ products and $\approx K^{4}$ sums, for each value of w, i.e. total $\mathcal{O}\left(\mathrm{K}^{5}\right)$.
- Multiplication is distributive: $c a+c b=c(a+b)$. The right hand side is more efficient!

Factor trees: separation (2)

$$
\begin{aligned}
p(w) & =\sum_{v} \sum_{x} \sum_{y} \sum_{z} f_{1}(v, w) f_{2}(w, x) f_{3}(x, y) f_{4}(x, z) \\
& =\left[\sum_{v} f_{1}(v, w)\right] \cdot\left[\sum_{x} \sum_{y} \sum_{z} f_{2}(w, x) f_{3}(x, y) f_{4}(x, z)\right]
\end{aligned}
$$

- In a tree, each node separates the graph into disjoint parts.
- Grouping terms, we go from sums of products to products of sums.
- The complexity is now $\mathcal{O}\left(\mathrm{K}^{4}\right)$.

Factor trees: separation (3)

- Sums of products becomes products of sums of all messages from neighbouring factors to variable.

Messages: from factors to variables (1)

$$
m_{f_{2} \rightarrow w}(w)=\sum_{x} \sum_{y} \sum_{z} f_{2}(w, x) f_{3}(x, y) f_{4}(x, z)
$$

Messages: from factors to variables (2)

$$
\begin{aligned}
m_{f_{2} \rightarrow w}(w) & =\sum_{x} \sum_{y} \sum_{z} f_{2}(w, x) f_{3}(x, y) f_{4}(x, z) \\
& =\sum_{x} f_{2}(w, x) \cdot \underbrace{\left[\sum_{y} \sum_{z} f_{3}(x, y) f_{4}(x, z)\right]}_{m_{x \rightarrow f_{2}}(x)}
\end{aligned}
$$

- Factors only need to sum out all their local variables.

Messages: from variables to factors (1)

Messages: from variables to factors (2)

$$
\begin{aligned}
m_{x \rightarrow f_{2}}(x) & =\sum_{y} \sum_{z} f_{3}(x, y) f_{4}(x, z) \\
& =\underbrace{\left[\sum_{y} f_{3}(x, y)\right]}_{m_{f_{3} \rightarrow x}(x)} \cdot \underbrace{\left[\sum_{z} f_{4}(x, z)\right]}_{m_{f_{4} \rightarrow x}(x)}
\end{aligned}
$$

- Variables pass on the product of all incoming messages.

Factor graph marginalisation: summary

- The complexity is reduced from $\mathcal{O}\left(\mathrm{K}^{5}\right)$ (naïve implementation) to $\mathcal{O}\left(\mathrm{K}^{2}\right)$.

The sum-product algorithm

In summary, message passing involved three update equations:

- Marginals are the product of all incoming messages from neighbour factors

$$
p(t)=\prod_{f \in F_{t}} m_{f \rightarrow t}(t)
$$

- Messages from factors sum out all variables except the receiving one

$$
m_{f \rightarrow t_{1}}\left(t_{1}\right)=\sum_{t_{2}} \sum_{t_{3}} \cdots \sum_{t_{n}} f\left(t_{1}, t_{2}, \ldots, t_{n}\right) \prod_{i \neq 1} m_{t_{i} \rightarrow f}\left(t_{i}\right)
$$

- Messages from variables are the product of all incoming messages except the message from the receiving factor

$$
m_{t \rightarrow f}(t)=\prod_{f_{j} \in F_{t} \backslash\{f\}} m_{f_{j} \rightarrow t}(t)=\frac{p(t)}{m_{f \rightarrow t}(t)}
$$

Messages are results of partial computations. Computations are localised.

